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On the Modeling of Highly Nonlinear Circuits
Using Total-Variation-Decreasing
Finite-Difference Schemes

Werner Thiel and Wolfgang Menzétellow, IEEE

Abstract—This paper presents the modeling of highly nonlinear is reduced by parasitic and ohmic effects so that a jump in the
circuits using a total-variation-decreasing (TVD) difference signal can never occur.

scheme developed for the simulation of problems involving shock | this paper, a second-order accurate total-variation-de-

henomena. In contrast to the commonly used leapfrog scheme, .
g second-order accurate TVD method g/ased on trr)1e Eax—Wen- creasing (TVD) scheme [2] based on the Lax-Wendroff scheme

droff scheme is applied to one-dimensional nonlinear transient [3] is used to describe the propagation of signals containing
electromagnetic-wave problems. Furthermore, for the analysis steep edges or even discontinuities. TVD methods originally
of transmission-line-based networks, an adapted inclusion of have been developed for 25 years for conservation laws, e.g., in
nonlinear lumped elements in such a TVD scheme is proposed. ASfy,,i gynamics, involving shock phenomena, and now, multidi-
an example, both the scattered signals of a linear transmission line . - .
loaded with a nonlinear lumped element is investigated and the mensional higher ord_er accurate schemes [4] aré avallable_for
formation of a shock-wave of a low-loss nonlinear transmission Systems of conservation laws and can be applied to many kind
line with distributed diodes is studied. In the simulation results, of problems, not necessarily to fluid dynamics. In Section II,
the modeling of rapidly rising edges occurring in the time signal the basic principles and construction of TVD schemes are
are demonstrated. explained for one-dimensional (1-D) conservation laws. In
Index Terms—Finite-difference methods, lumped-element Section Ill, the scheme is applied to a 1-D linear transmission

microwave circuits, nonlinear wave propagation, TVD scheme. line, which was presented in [5] first, basically showing the
propagation of a step function. Next, a method for the inclusion
I. INTRODUCTION of nonlinear elements in the transmission line is developed,

] ) ) preserving the TVD condition, and boundary conditions for
A GREAT advantage of time-domain methods is the posghe TVD schemes are discussed. Finally, a low-loss nonlinear
bility to model many kinds of nonlinear microwave structransmission line (NLTL) with distributed diodes is modeled
tures. That is one of the reasons why they have become mg&ghg a TVD scheme so that the shock-wave formation on the

and more popular over the last few years. However, in highfipe and finally the shock-wave propagation can clearly be
nonlinear circuits where the time signal contains steep edg§isserved.

or even a discontinuity, problems emerge with the commonly

usgd second-order accurate leapfrog scherr_1e for electrqmag- . TVD SCHEME

netic wave phenomena, e.g., the Yee scheme in the three-dimen- _

sional (3-D) case. This class of numerical schemes only prO_In this section, a second-order accurate TVD scheme for 1-D

duces good results if the time signal is smooth enough. If tR¥Perbolic systems of conservation laws given by

fall or rise times of the signal comes into the range of a few
¢ >4 ) . du  OF(u)
time steps only, an oscillation of the signal can be observed in En o 0 (1)
the vicinity of the edge due to the numerical dispersion. . . _
Steep edges in the time signal are mainly caused by nonliniagonsidered, where = (uy, ..., ux)", andF(u) is a non-

lumped elements included in the circuit. For this case, in [1],li@ear vector function. The system is called hyperbolic if all
solution was suggested to avoid the overshoot phenomena gigi¢nvalues\; of the Jacobian matrid(u) = OF(u)/du are

a subsequent ringing of the signal. In [1], an adaptive time stégal. The system of conservation laws (1) can be approximated
depending on the slope of the signal was proposed, but this fg-the difference scheme

proach can only be successful if the effect of the nonlinearity

+1 _ ) )
w, " =up — R (h2+1/2 - h2—1/2) 2
with R = At/Az. In this difference equation, the numerical
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boundary

¢ o %
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In the scalar case, the total variation

oo

TV(W") = > |64up] (3)

k=—oc

of any weak solution of the system of conservation laws (1) does

M z
not increase with the time [4]. As a consequence, the numerical
scheme f_or conservat_lon law .(1) also ha_s.to satisfy this properl%.. 1. Numerical domain of the TVD scheme.
A numerical scheme is TVD if the condition
TV (vt < TV (u") 4) Furthermore, for the calculation of the numerical fhi, ,

in (6), the eigenvalues;; and eigenvectors;;, have to be com-
holds. This means that the numerical scheme will not increasgted on each grid point and time step. Next, the difference

the number of existing maxima in the functianat any time. yectors, u; has to be expanded in terms of the eigenvectors
In Section Ill, the evolution of the total variation over the time

and the effect of the TVD criterion on a rectangular signal are ok
studied as the example of a linear transmission line. As TVD R| = §pul. 9)
schemes are, at most, first-order [2], a numerical scheme has to
be constructed that shows an accuracy of second order at most
places, especially in smooth regions, and is first-order accuratgis decomposition in terms of eigenvectors is required by the
near discontinuities. Applying the flux-limiter method, the nufirst-order upwind scheme where the spatial discretization de-
merical flux can be composed by a low-order scheme andyands on the sign of the corresponding eigenvector. Finally, the
high-order scheme and can be expressed by function® (©7, ) has to be chosen in such a way that the TVD
B o P [h" o } (5) condition (4)_is satisfied for all value_s @. In the literature, _
kt1/2 = BLk+1/2 0 Bk | THE+1/2 7 TLk+1/2 several functions are proposed. In this paper, the Superbee lim-
ict‘er [7] is used, which can be expressed in the following way:

YKk

where®7 represents a nonlinear function not yet determine
It can easily be seen that the low-order scheme is obtained if
¢} is set to zero. In the other case, ®f = 1, a high-order

scheme results. Here, as described in [2], an upwind SChe@ﬁe of the most important properties of this limiter function is

(first-order and TVD) is used for the Iow-prder scheme, aNfe capability to sharpen the edges of the signal, which is very
the Lax—Wendroff (second-order) scheme is taken for the hlgu seful when dealing with step functions

order scheme. Following this approach, the numerical flux CanFinaIIy, the TVD scheme (2) with the flux defined in (6) is

® = max {0, min[l, 20], min[2, @]} (10)

be given by considered in the numerical domain, as shown in Fig. 1. In con-
LK trast to the leapfrog scheme, all elements of the veatare
h2'+1/2 =h’£,k+1/2+§ Z)\jk‘l’ﬁ [Sign(/\jk)—)\ij} ATk placed on the grid nodes and are computed only for whole-
=t number time stepaAt. Due to this arrangement, a boundary

(6) condition for all variables has to be used at the outer nodes
and, therefore, the implementation of a boundary condition will
with differ from that of the leapfrog scheme. An absorbing boundary
A condition (ABC) in the case of such condensed nodes is given
A (UZ,UZ’H)‘ 64wy (7) in Section IV. In this paper, the TVD scheme is applied to a
linear and an NLTL problem. The numerical results are com-

n 1 n n 1
Ry gt12 = > (Fiy +F3) — 2

and the smoothness parameter pared with the widely used leapfrog scheme, which is known
Qjr1 as the Yee scheme [8] in the 3-D case. To point out the signif-
. o for Ajx > 0 icant differences between both schemes, for a 1-D two system
ik = ocj;ﬁﬂ for \x < 0 (8) of conservation laws, the numerical domain of the second-order
g ik ’ accurate leapfrog scheme of a linear transmission line (Fig. 2)
which is an indicator for the change of the slope between adja- Y2 _n=1/2 R (un _ un) (12)
cent grid nodes. In the nonlinear case, where the Jacobian ma- kt1/2 Tktl/2 0 p \TRFL TR
t_rix A (uy,uf, ) is notconstant and depends on both space and ui =l — R (izi—l/Q . i"j+1/2) (12)
time, some sort of average between the veaigrandu} , has C 12 ktL/2

to be chosen. According to [6], the mattk has to fulfill the

, e with the capacitance per length, the inductance per length
following three conditions.

. L, andR = At/Az is shown in Fig. 3. Here, the voltage
A (up uwiyy) (g, —up) = F (upy,) — F (u)). is placed on grid nodes and is updated for whole-number time
2) A (u},u},) is diagonalizable with real eigenvalues. steps, whereas the currenis located between two grid nodes

3) A (up, upy,) — OF(u) /0w asup,ul,, — u. and is computed for intermediate time steps. As a consequence
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IIl. LINEAR TRANSMISSIONLINE

As a first example, the above-described TVD scheme is dpg- 5. Equivalent circuit for the computation of the scattering problem of the
plied to a lossless linear transmission line according to Fig.'4MPed elementin the time domain.
For the first time, a TVD scheme was used modeling a linear
transmission line with a resistive load in [5]. The system of ditime steps. The total variation of the input sig(fEV (u) = 2) is
ferential equations can be written in conservation law form (Iotincreased by the TVD scheme, but strongly rises when using
the leapfrog scheme. While the TVD scheme is able to model

@ + A@ =0 (13) the discontinuities in the signal and does not flatten the slope
ot dx significantly, the leapfrog scheme produces heavy oscillations,
with which make the result unusable.

Finally, the simulation times of the TVD and leapfrog
i 0 schemes are compared. If, in both schemes, the same dis-
= andA = R Co ' _
v <v> 1 cretization in space and time is used, the computational effort
C of the TVD scheme is about ten times higher than that of the
A is a matrix with constant coefficients in time and space, af@pPfrog scheme because the veatonas to be expanded in
its eigenvalues are found as terms of the eigenvectors yielding more mathematical opera-
tions. Applying the leapfrog scheme to nearly discontinuous

(14)

S N

A\ = —r and)\, = —— (15) signals, however, the time step has to be decreased until the fall
VLC VLC or rise time of the discontinuity is represented by at least 100
The eigenvectors of the matri are time steps, whereas in the TVD scheme, a jump in the signal
can be characterized by only a few time steps or even by one
= < @) andr, = <\\/g> (16) time step.

referring to the two possible waves on the transmission line IV. INCLUSION OF LUMPED ELEMENTS

propagating in opposite directions. As an example, the propadn the previous section, it has been shown that a TVD scheme
gation of a rectangular pulse was observed on a 1-m-long traigsnecessary if digital signals with short rise or fall times are
mission line with a characteristic impedance ofband a phase used. However, even if a transmission-line network is excited
velocity of co = 3 - 10 m/s. To guaranty the stability of the nu-with a smooth signal, steep edges can be caused by highly non-

merical scheme, a Courant number linear lumped elements. As a consequence, the signal starts os-
At cillating and leads to the same problems as discussed before. To
v=A12 Az ‘ <1 (17) analyze networks containing several lumped elements, a method

for the inclusion of lumped elements in the transmission line has
is required [2]. In this simulation, a Courant numbef 0.5was to be developed that is simultaneously preserving the TVD con-
chosen. In Fig. 4, the resulting pulses on the transmission lidiéion. The principle is based on a scattering problem in the time
of both the TVD and leapfrog scheme are compared after 1000main. In Fig. 5, the equivalent circuit of the problem is shown,
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including the lumped element and voltage sources driven by
the voltage of the incident wave at the timet+ 1. The volt- Fig. 7. propagation of a scattered harmonic signal (2 GHz) on a 10-m-long
agesUf‘Z |**1 and UQ)‘1 |**1 are computed using the differenceransmission line (5@, 5 = ¢,) loaded with a diode placed in the middle of
scheme at the grid poinf§ — 1 andK +2 (Fig. 6), respectively. € line after 20000 time steps (Courant numéed.5).

SinceU; | andU;? |k 4 are set to zero, no reflected wave is i iest

excited and, therefore, an ABC at the grid nodés- 1 and — ~5
K +2is obtained. The ABC is, at most, first-order accurate and va Y :lR - Cp
depends mainly on the values foz |k and U2Al |k +1, which G

influence the accuracy but do not affect the reflection coefficient  |%# c R Uk+1
I'sgc = 0. The implementation of the ABC becomes possible T
in such a way because the TVD scheme is based on condense® O
nodes where the vectarcan be decomposed in terms of eigerhg. 8. Model of an NLTL.
vectors.

From the equivalent circuit (Fig. 5), a system of the differe
tial equation

ncilong a section at the end of the 10-m-long transmission line is
shown in Fig. 7 after 20 000 time steps.
9X The circuit was excited with a harmonic signal with an am-
AE +B(X) =0 (18) plitude of 10 V and a frequency of 2 GHz. Due to the strongly
nonlinear characteristic of the diode, steep edges occur in the

results, which has to be solved for the time step> » + 1,  {ime signal, and the signal computed with the leapfrog method
where the state vectdX' contains the voltages and currents of 45 oscillating while propagating on the transmission line.
the network. Applying the backward Euler method, (18) can be

approximated by the difference equation V. NLTL

ntl n b1y In this section, the second-order TVD scheme is applied to an
A (X -X ) +B (X ) =0 (19) NLTL with distributed diodes according to Fig. 8. With such a
scheme, the formation of shock waves can be simulated without
and the resulting nonlinear system of equations can be solgflirious oscillations caused by non-TVD schemes. Since the
with the Newton method. Next, on both ports, the voltages afgkses of the NLTL are very low, the resistariéeconductance
currents of the scattered waves are extracted from the stateynq resistance of the diod&, per length can be neglected
vectorX"** and can finally be updated on all four grid points,nqg set to zero. Using the chargénstead of the voltage for

(Fig. 6) at the time step. + 1. At the time stepn + 1, the  {he second variable, the charge can be expressed by
voltage of the reflected wave at both porf§ ¢ 1 and K + 2)

is finally given by ¢ = Cu+ Qp(u) = g(u) (23)
UP | = - ot (20)  whereQp(u) is the voltage-dependent charge per length of the
diode, and” is the capacitance per length of the linear transmis-
and sion line. The chargé€(u) is obtained by an integration of the
capacitanc€'p (1) over the voltage:. The system of conserva-
UQAZ L = — UQAI i (21) tjon _Iaws can be written analogously to the linear transmission
line in Section Ill as
As an example, a diode with an ideal characteristic i )
() CF) o e
1 ¢ z

I=1I, (eU/ U _ 1) (22)
In the nonlinear case, the eigenvalues

with Iy = 1 mA andUz = 25 mV is included in the middle 1

of the transmission line with a characteristic impedance @250 AL = T A2 = =N\t (25)

and a phase velocity of 310° m/s. The voltage distribution LLg(9749)
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TABLE |
ELECTRICAL PROPERTIES OF THEGAAS NLTL

LinnH/m | CinpF/m | Cjo pF/m | UpinV
588 132 288 0.7

30ps  60ps  90ps  120ps

voltage in V

0 0.002 0.004  0.006 0.008 0.01

x in m

The 1-cm-long NLTL was excited by a step function with a fall
time of 20 ps. In Figs. 9 and 10, the voltage on the NLTL is
shown after 30, 60, 90, and 120 ps. Using the TVD scheme, the
voltage jumps from 0 te-6 V within a few space steps at the
shock. With the leapfrog scheme, heavy oscillations occur when
the partial shock arises and, after 70 ps, the signal is unusable
for further studies.

The propagation velocity of the shock

1
v, =
shock \/L IR — L
97 (qr) — 97 *(qz)

can also be accurately modeled by the TVD scheme. To this
end, an analysis of NLTLs requires a numerical scheme that

(29)

Fig. 9. Shock formation on the GaAs NLTL excited with a step function withS conservative and TVD. Even if Ioss.es are |nt.roduced 'n_the
20-ps fall time; signal on the NLTL after 30, 60, 90, and 120 ps using leapfddLTL, such a scheme has to be taken if the fall time comes into

scheme.

30ps  60ps _ 90ps _ 120ps

1k - o 4
2+ . .

4t g

voltage in V

-6

0 0.002 0.004 0.006 0.008 0.01
xinm

the range of several time steps (00 At) or space steps.

VI. CONCLUSION

In this paper, the TVD algorithm has been introduced for
the finite-difference solutions of nonlinear transient electro-
magnetic-wave problems. As an example of higher resolution
schemes, a second-order TVD scheme based on the Lax—Wen-
droff scheme was applied to a linear transmission line loaded
with a nonlinearity and to a low-loss NLTL. It has be shown
that the commonly used leapfrog scheme fails when dealing
with highly nonlinear low-loss structures. In this paper, only

Fig. 10. Shock formation on the GaAs NLTL excited with a step function Witﬁhe_ appl|c§t|on to the 1-D problem Was ShOV\{ﬂ. Further Work IS
20-ps fall time; signal on the NLTL after 30, 60, 90, and 120 ps using the Tvbeing carried out for more challenging work in the two-dimen-

scheme.

and eigenvectors

= () »m(0L) @

sional (2-D) or 3-D case in electromagnetics.
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