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On the Modeling of Highly Nonlinear Circuits
Using Total-Variation-Decreasing

Finite-Difference Schemes
Werner Thiel and Wolfgang Menzel, Fellow, IEEE

Abstract—This paper presents the modeling of highly nonlinear
circuits using a total-variation-decreasing (TVD) difference
scheme developed for the simulation of problems involving shock
phenomena. In contrast to the commonly used leapfrog scheme,
a second-order accurate TVD method based on the Lax–Wen-
droff scheme is applied to one-dimensional nonlinear transient
electromagnetic-wave problems. Furthermore, for the analysis
of transmission-line-based networks, an adapted inclusion of
nonlinear lumped elements in such a TVD scheme is proposed. As
an example, both the scattered signals of a linear transmission line
loaded with a nonlinear lumped element is investigated and the
formation of a shock-wave of a low-loss nonlinear transmission
line with distributed diodes is studied. In the simulation results,
the modeling of rapidly rising edges occurring in the time signal
are demonstrated.

Index Terms—Finite-difference methods, lumped-element
microwave circuits, nonlinear wave propagation, TVD scheme.

I. INTRODUCTION

A GREAT advantage of time-domain methods is the possi-
bility to model many kinds of nonlinear microwave struc-

tures. That is one of the reasons why they have become more
and more popular over the last few years. However, in highly
nonlinear circuits where the time signal contains steep edges
or even a discontinuity, problems emerge with the commonly
used second-order accurate leapfrog scheme for electromag-
netic wave phenomena, e.g., the Yee scheme in the three-dimen-
sional (3-D) case. This class of numerical schemes only pro-
duces good results if the time signal is smooth enough. If the
fall or rise times of the signal comes into the range of a few
time steps only, an oscillation of the signal can be observed in
the vicinity of the edge due to the numerical dispersion.

Steep edges in the time signal are mainly caused by nonlinear
lumped elements included in the circuit. For this case, in [1], a
solution was suggested to avoid the overshoot phenomena and
a subsequent ringing of the signal. In [1], an adaptive time step
depending on the slope of the signal was proposed, but this ap-
proach can only be successful if the effect of the nonlinearity
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is reduced by parasitic and ohmic effects so that a jump in the
signal can never occur.

In this paper, a second-order accurate total-variation-de-
creasing (TVD) scheme [2] based on the Lax–Wendroff scheme
[3] is used to describe the propagation of signals containing
steep edges or even discontinuities. TVD methods originally
have been developed for 25 years for conservation laws, e.g., in
fluid dynamics, involving shock phenomena, and now, multidi-
mensional higher order accurate schemes [4] are available for
systems of conservation laws and can be applied to many kind
of problems, not necessarily to fluid dynamics. In Section II,
the basic principles and construction of TVD schemes are
explained for one-dimensional (1-D) conservation laws. In
Section III, the scheme is applied to a 1-D linear transmission
line, which was presented in [5] first, basically showing the
propagation of a step function. Next, a method for the inclusion
of nonlinear elements in the transmission line is developed,
preserving the TVD condition, and boundary conditions for
the TVD schemes are discussed. Finally, a low-loss nonlinear
transmission line (NLTL) with distributed diodes is modeled
using a TVD scheme so that the shock-wave formation on the
line and finally the shock-wave propagation can clearly be
observed.

II. TVD SCHEME

In this section, a second-order accurate TVD scheme for 1-D
hyperbolic systems of conservation laws given by

(1)

is considered, where and is a non-
linear vector function. The system is called hyperbolic if all
eigenvalues of the Jacobian matrix are
real. The system of conservation laws (1) can be approximated
by the difference scheme

(2)

with . In this difference equation, the numerical
flux generally depends
on grid points. If is a solution to conservation law
(1), and if the vectors with in the numerical
flux function are replaced by the solution, then the numerical
scheme (2) is said to be consistent with conservation law (1) if

.
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In the scalar case, the total variation

(3)

of any weak solution of the system of conservation laws (1) does
not increase with the time [4]. As a consequence, the numerical
scheme for conservation law (1) also has to satisfy this property.
A numerical scheme is TVD if the condition

(4)

holds. This means that the numerical scheme will not increase
the number of existing maxima in the functionat any time.
In Section III, the evolution of the total variation over the time
and the effect of the TVD criterion on a rectangular signal are
studied as the example of a linear transmission line. As TVD
schemes are, at most, first-order [2], a numerical scheme has to
be constructed that shows an accuracy of second order at most
places, especially in smooth regions, and is first-order accurate
near discontinuities. Applying the flux-limiter method, the nu-
merical flux can be composed by a low-order scheme and a
high-order scheme and can be expressed by

(5)

where represents a nonlinear function not yet determined.
It can easily be seen that the low-order scheme is obtained if

is set to zero. In the other case, for , a high-order
scheme results. Here, as described in [2], an upwind scheme
(first-order and TVD) is used for the low-order scheme, and
the Lax–Wendroff (second-order) scheme is taken for the high-
order scheme. Following this approach, the numerical flux can
be given by

(6)

with

(7)

and the smoothness parameter

for

for
(8)

which is an indicator for the change of the slope between adja-
cent grid nodes. In the nonlinear case, where the Jacobian ma-
trix is not constant and depends on both space and
time, some sort of average between the vectorsand has
to be chosen. According to [6], the matrix has to fulfill the
following three conditions.

1) .
2) is diagonalizable with real eigenvalues.
3) as .

Fig. 1. Numerical domain of the TVD scheme.

Furthermore, for the calculation of the numerical flux
in (6), the eigenvalues and eigenvectors have to be com-
puted on each grid point and time step. Next, the difference
vector has to be expanded in terms of the eigenvectors

... (9)

This decomposition in terms of eigenvectors is required by the
first-order upwind scheme where the spatial discretization de-
pends on the sign of the corresponding eigenvector. Finally, the
function has to be chosen in such a way that the TVD
condition (4) is satisfied for all values of . In the literature,
several functions are proposed. In this paper, the Superbee lim-
iter [7] is used, which can be expressed in the following way:

(10)

One of the most important properties of this limiter function is
the capability to sharpen the edges of the signal, which is very
useful when dealing with step functions.

Finally, the TVD scheme (2) with the flux defined in (6) is
considered in the numerical domain, as shown in Fig. 1. In con-
trast to the leapfrog scheme, all elements of the vectorare
placed on the grid nodes and are computed only for whole-
number time steps . Due to this arrangement, a boundary
condition for all variables has to be used at the outer nodes
and, therefore, the implementation of a boundary condition will
differ from that of the leapfrog scheme. An absorbing boundary
condition (ABC) in the case of such condensed nodes is given
in Section IV. In this paper, the TVD scheme is applied to a
linear and an NLTL problem. The numerical results are com-
pared with the widely used leapfrog scheme, which is known
as the Yee scheme [8] in the 3-D case. To point out the signif-
icant differences between both schemes, for a 1-D two system
of conservation laws, the numerical domain of the second-order
accurate leapfrog scheme of a linear transmission line (Fig. 2)

(11)

(12)

with the capacitance per length, the inductance per length
, and is shown in Fig. 3. Here, the voltage

is placed on grid nodes and is updated for whole-number time
steps, whereas the currentis located between two grid nodes
and is computed for intermediate time steps. As a consequence
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Fig. 2. Linear transmission line.

Fig. 3. Numerical domain of the leapfrog scheme.

of interleaving the componentsand of the vector , either the
voltage or the current terminates the transmission line so that a
different approach for a boundary condition is necessary.

III. L INEAR TRANSMISSIONLINE

As a first example, the above-described TVD scheme is ap-
plied to a lossless linear transmission line according to Fig. 2.
For the first time, a TVD scheme was used modeling a linear
transmission line with a resistive load in [5]. The system of dif-
ferential equations can be written in conservation law form (1)

(13)

with

and (14)

is a matrix with constant coefficients in time and space, and
its eigenvalues are found as

and (15)

The eigenvectors of the matrix are

and (16)

referring to the two possible waves on the transmission line
propagating in opposite directions. As an example, the propa-
gation of a rectangular pulse was observed on a 1-m-long trans-
mission line with a characteristic impedance of 50and a phase
velocity of m/s. To guaranty the stability of the nu-
merical scheme, a Courant number

(17)

is required [2]. In this simulation, a Courant numberof 0.5 was
chosen. In Fig. 4, the resulting pulses on the transmission line
of both the TVD and leapfrog scheme are compared after 1000

Fig. 4. Propagation of a rectangular pulse (0.167 ps) on a linear transmission
line (50
, � = c ). Comparison between the leapfrog and TVD scheme after
1000 time steps. Courant–Friedrichs–Lewy number= 0:5.

Fig. 5. Equivalent circuit for the computation of the scattering problem of the
lumped element in the time domain.

time steps. The total variation of the input signal is
not increased by the TVD scheme, but strongly rises when using
the leapfrog scheme. While the TVD scheme is able to model
the discontinuities in the signal and does not flatten the slope
significantly, the leapfrog scheme produces heavy oscillations,
which make the result unusable.

Finally, the simulation times of the TVD and leapfrog
schemes are compared. If, in both schemes, the same dis-
cretization in space and time is used, the computational effort
of the TVD scheme is about ten times higher than that of the
leapfrog scheme because the vectorhas to be expanded in
terms of the eigenvectors yielding more mathematical opera-
tions. Applying the leapfrog scheme to nearly discontinuous
signals, however, the time step has to be decreased until the fall
or rise time of the discontinuity is represented by at least 100
time steps, whereas in the TVD scheme, a jump in the signal
can be characterized by only a few time steps or even by one
time step.

IV. I NCLUSION OFLUMPED ELEMENTS

In the previous section, it has been shown that a TVD scheme
is necessary if digital signals with short rise or fall times are
used. However, even if a transmission-line network is excited
with a smooth signal, steep edges can be caused by highly non-
linear lumped elements. As a consequence, the signal starts os-
cillating and leads to the same problems as discussed before. To
analyze networks containing several lumped elements, a method
for the inclusion of lumped elements in the transmission line has
to be developed that is simultaneously preserving the TVD con-
dition. The principle is based on a scattering problem in the time
domain. In Fig. 5, the equivalent circuit of the problem is shown,



THIEL AND MENZEL: MODELING OF HIGHLY NONLINEAR CIRCUITS USING TVD FINITE-DIFFERENCE SCHEMES 1623

Fig. 6. Involved grid points belonging to the lumped element.

including the lumped element and voltage sources driven by
the voltage of the incident wave at the time . The volt-
ages and are computed using the difference
scheme at the grid points and (Fig. 6), respectively.
Since and are set to zero, no reflected wave is
excited and, therefore, an ABC at the grid nodes and

is obtained. The ABC is, at most, first-order accurate and
depends mainly on the values for and , which
influence the accuracy but do not affect the reflection coefficient

. The implementation of the ABC becomes possible
in such a way because the TVD scheme is based on condensed
nodes where the vectorcan be decomposed in terms of eigen-
vectors.

From the equivalent circuit (Fig. 5), a system of the differen-
tial equation

(18)

results, which has to be solved for the time step ,
where the state vector contains the voltages and currents of
the network. Applying the backward Euler method, (18) can be
approximated by the difference equation

(19)

and the resulting nonlinear system of equations can be solved
with the Newton method. Next, on both ports, the voltages and
currents of the scattered waves are extracted from the state
vector and can finally be updated on all four grid points
(Fig. 6) at the time step . At the time step , the
voltage of the reflected wave at both ports ( and )
is finally given by

(20)

and

(21)

As an example, a diode with an ideal characteristic

(22)

with mA and mV is included in the middle
of the transmission line with a characteristic impedance of 50
and a phase velocity of 310 m/s. The voltage distribution

Fig. 7. Propagation of a scattered harmonic signal (2 GHz) on a 10-m-long
transmission line (50
, � = c ) loaded with a diode placed in the middle of
the line after 20 000 time steps (Courant number= 0:5).

Fig. 8. Model of an NLTL.

along a section at the end of the 10-m-long transmission line is
shown in Fig. 7 after 20 000 time steps.

The circuit was excited with a harmonic signal with an am-
plitude of 10 V and a frequency of 2 GHz. Due to the strongly
nonlinear characteristic of the diode, steep edges occur in the
time signal, and the signal computed with the leapfrog method
starts oscillating while propagating on the transmission line.

V. NLTL

In this section, the second-order TVD scheme is applied to an
NLTL with distributed diodes according to Fig. 8. With such a
scheme, the formation of shock waves can be simulated without
spurious oscillations caused by non-TVD schemes. Since the
losses of the NLTL are very low, the resistance, conductance

, and resistance of the diode per length can be neglected
and set to zero. Using the chargeinstead of the voltage for
the second variable, the charge can be expressed by

(23)

where is the voltage-dependent charge per length of the
diode, and is the capacitance per length of the linear transmis-
sion line. The charge is obtained by an integration of the
capacitance over the voltage . The system of conserva-
tion laws can be written analogously to the linear transmission
line in Section III as

(24)

In the nonlinear case, the eigenvalues

(25)
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TABLE I
ELECTRICAL PROPERTIES OF THEGAAS NLTL

Fig. 9. Shock formation on the GaAs NLTL excited with a step function with
20-ps fall time; signal on the NLTL after 30, 60, 90, and 120 ps using leapfog
scheme.

Fig. 10. Shock formation on the GaAs NLTL excited with a step function with
20-ps fall time; signal on the NLTL after 30, 60, 90, and 120 ps using the TVD
scheme.

and eigenvectors

(26)

depend on both space and time and, consequently, have to be
computed for each grid point and each time step.is a kind of
average between and and has to be determined so that
the three conditions for the Jacobian matrixof Section II are
fulfilled. To this end, has to satisfy

(27)

As a numerical example, the GaAs NLTL presented in [9] is
used for a comparison between the TVD and leapfrog schemes.
The electrical properties of the NLTL are listed in Table I. Since
a homogeneous doping profile for the diodes is chosen, the ca-
pacitance per length is given by

(28)

The 1-cm-long NLTL was excited by a step function with a fall
time of 20 ps. In Figs. 9 and 10, the voltage on the NLTL is
shown after 30, 60, 90, and 120 ps. Using the TVD scheme, the
voltage jumps from 0 to 6 V within a few space steps at the
shock. With the leapfrog scheme, heavy oscillations occur when
the partial shock arises and, after 70 ps, the signal is unusable
for further studies.

The propagation velocity of the shock

(29)

can also be accurately modeled by the TVD scheme. To this
end, an analysis of NLTLs requires a numerical scheme that
is conservative and TVD. Even if losses are introduced in the
NLTL, such a scheme has to be taken if the fall time comes into
the range of several time steps ( ) or space steps.

VI. CONCLUSION

In this paper, the TVD algorithm has been introduced for
the finite-difference solutions of nonlinear transient electro-
magnetic-wave problems. As an example of higher resolution
schemes, a second-order TVD scheme based on the Lax–Wen-
droff scheme was applied to a linear transmission line loaded
with a nonlinearity and to a low-loss NLTL. It has be shown
that the commonly used leapfrog scheme fails when dealing
with highly nonlinear low-loss structures. In this paper, only
the application to the 1-D problem was shown. Further work is
being carried out for more challenging work in the two-dimen-
sional (2-D) or 3-D case in electromagnetics.
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